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1 Introduction

Lorentz symmetry is assumed to be an exact symmetry of nature. However, there are

many exotic theories, mainly quantum gravity and string models, which predict Lorentz

violating effects in the high energy limit, see [1] and references therein. Such an effect is

an energy dependent velocity of photons, as in the context of quantum gravity models of

space time foam, where the vacuum behaves like a medium with a nontrivial subluminous

refractive index. Accordingly, different times of arrival are expected when photons with

very high energies, which are emitted simultaneously from remote astrophysical sources,

reach the detectors of current experiments. Note that there are recent experimental data

of MAGIC and FERMI telescopes, which imply a time delay of more energetic photons

in comparison against lower-energy ones. However, such a difference may also have a

conventional astrophysical interpretation: for example, photons with different energies may

be emitted not simultaneously at their sources.

Beyond quantum gravity models, an alternative mechanism which can produce a non-

trivial vacuum refractive index based on brane models with an asymmetric space-time

warping, was proposed. This mechanism was studied in [2] using time independent per-

turbation theory. Here we will study this mechanism in the nonperturbative regime, by

solving numerically the eigenvalue problem for the wave function of the 4D photon. Such

a study is useful for an analysis of extremely high energy cosmic phenomena in the context
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of asymmetric warp models. An example might be ultra high energy photons with energies

higher than 1019 eV.

Brane world models [3–5] are models with extra dimensions which are used by theorists

in order to address the hierarchy problem. According to this scenario, standard model par-

ticles are assumed to be localized in a three dimensional brane (our world), while gravitons

can propagate in the multidimensional bulk. Beyond the ADD scenario [4, 5] where the

extra dimensions are assumed to be large, brane models in which the bulk space time is

warped have been also proposed [6, 7]. In the case of warped space-time, the extra dimen-

sions could be: (1) finite, if a second parallel brane world lies at a finite bulk distance from

our world [6] or (2) infinite, if our world is viewed as an isolated brane, embedded in an (in-

finite) bulk space [7]. The previously mentioned model with the two branes, is often called

first Randall Sundrum model (RS1-model). Generalizations of the above generic models,

including, for instance, bulk fields along the extra dimension(s) or higher-order curvature

corrections, have been also considered, see for example refs. [8–11] and references therein.

We will adopt the following generic ansatz for the metric in five dimensions

ds2 = −α2(z)dt2 + β2(z)dx2 + γ2(z)dz2 (1.1)

where z parameterizes the extra dimension. In contrast to the RS-model where the space

and time warp factors are equal, in models with an asymmetric warping we have in general

α(z) 6= β(z). Thus, although the induced metric on the brane (localized at z = 0 for

example) is Lorentz invariant upon considering the case α(0) = β(0), the metric of eq. (1.1)

does not preserve 4D Lorentz invariance in the bulk since α(z) 6= β(z) for z 6= 0. In such

models Lorentz violation is due to bulk particles which can ”feel” the difference between

the space and time warp factors toward the extra dimension. In the standard brane-world

scenario only gravitons are allowed to propagate in the bulk, hence, in the tree level,

Lorentz violation effects are expected only in the gravitational sector. In refs. [12, 13]

specific asymmetric models predict a superluminous propagation of gravitons. However,

since the detection of gravitons is still not an experimental fact, we cannot use this effect

in order to set restrictions to asymmetric brane models.

As we have already mentioned, in ref. [2] an asymmetric model where photons can

freely move between two parallel branes in a 5D black hole background was considered. A

perturbative analysis, of this model, gave an energy-dependent phase (or group) velocity

of light:

Vph(ω) = Vph(0) − CG ω2 (CG > 0) (1.2)

and

Vgr(ω) = Vgr(0) − 3CG ω2 (1.3)

which was derived up to second order of time independent perturbation theory. Usually, in

the conventional models the only bulk particles are the gravitons, but in the case of bulk

photons which will be considered here we can set severe constraints to the free parameters

of asymmetric models, see ref. [2].

In this paper, we have examined the nonperturbative regime of the model in ref. [2],

by solving numerically an eigenvalue problem for the wave function of the zero mode (4D
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photon). We found that Vph(ω) is indeed given by the perturbative formula of eq. (1.2)

in the range of small energies, but there is an inflexion point after which perturbation

theory is not valid, then the phase velocity decreases monotonically with energy and tends

asymptotically to a limiting value Vph(∞).

It worth to note that in the earlier work of ref. [14] by J. M. Cline and L. Valcarcel, a

nonperurbative study of gravitons in asymmetrically warped brane models was presented.

In this paper we found convenient to keep a part of notation and organization of ref. [14],

however the main motivation of this paper is quite different, as we explain in conclusions.

In section 2 we introduce an asymmetric model with bulk photons, which consists of two

branes in a 5D charged black hole background, and we examine in detail the corresponding

junction conditions on the two branes. In section 3 we present the nonperturbative analysis

for the phase velocity and group velocity of 4D photon, while in section 4 we study the

behavior of the wave function of the zero mode and the first KK excitation. Finally in

section 5, we present our conclusions and we discus our results in connection with the

MAGIC experiment, and the recent severe restrictions of ultra high energy cosmic rays on

quadratic dispersion relations for the velocity of light.

2 Asymmetric two brane models

2.1 5D AdS-Reissner-Nordstrom black holes

We consider an action which includes 5D gravity, a negative cosmological constant Λ, plus

a bulk U(1) gauge field [12]:

S =

∫

d5x
√

g

(

1

16πG5
(R(5) − 2Λ) − 1

4
BMNBMN

)

+

∫

d4x

√

g
(+)
(br)L

(+)
m + +

∫

d4x

√

g
(−)
(br)L

(−)
m , (2.1)

where G5 is the five dimensional Newton constant, and BMN = ∂MHN −∂NHM is the field

strength of the U(1) gauge field HM , with M,N = 0, 1 . . . 4. The four-dimensional terms

in the action correspond to matter fields localized on the two branes of the model, which

are located at r = r+ and r = r− (r− < r+), and described by two perfect fluids, localized

on the two branes, with energy momentum tensors

T ν
(+)µ = Diag(−ρ+, p+, p+, p+)δ(r − r+) (2.2)

T ν
(−)µ = Diag(−ρ−, p−, p−, p−)δ(r − r−) (2.3)

As we will see in section 2.2, these brane terms are necessary for the solution of eqs. (2.6)

and (2.7) below to satisfy the Israel junction conditions on the two branes.

The corresponding Einstein equations can be written as

GMN + ΛgMN = 8πG5





√

|g(+)
(br)|

√

|g|
T (+)

µν δµ
Mδν

N +

√

|g(−)
(br)|

√

|g|
T (−)

µν δµ
M δν

N + T
(B)
MN



 (2.4)
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where the energy momentum tensor for the U(1) Gauge field is:

T
(B)
MN = BMP B P

N − 1

4
gMNBPSBPS (2.5)

For the metric of the black hole solution we make the ansatz

ds2 = −h(r)dt2 + ℓ−2r2dΣ2 + h(r)−1dr2 (2.6)

where dΣ2 = dσ2 + σ2dΩ2 is the metric of the spatial 3-sections, which in our case are

assumed to have zero curvature. Moreover, ℓ is the AdS radius which is equal to
√

− 6
Λ .

By solving the Einstein equations (2.4) we obtain:

h(r) =
r2

ℓ2
− µ

r2
+

Q2

r4
(2.7)

where µ is the mass (in units of the five dimensional Planck scale) and Q the charge of

the 5D AdS-Reissner-Nordstrom black hole. This, of course, presupposes the existence of

extra bulk matter, namely a point-like source with mass µ and charge Q. Note that, in the

case of nonzero charge Q, a non-vanishing component B0r of the bulk field-strength tensor

BMN :

B0r =

√
6√

8πG5

Q

r3
, (2.8)

is necessary so that the solution satisfies the corresponding Einstein-Maxwell equations.

2.2 Junction conditions

We can use the 5D AdS-Reissner-Nordstrom black hole solution in order to construct two

brane models. As a first step, we place two branes, one at the position r = r+ (Planck

brane) and the other at the position r = r− (TeV brane) (note that r+ > r−). We next

assume that for r < r+ the 5D metric is given by eq. (2.6), while for r > r+ the metric is

given by eq. (2.6) upon the replacement r ↔ r2
+/r. The metric which is obtained in this

way is Z2-symmetric upon the replacement r ↔ r2
+/r, and the points r+ and r− correspond

to the fixed points of the orbifold structure of the model.

The next step is to glue the two independent slices of the metric by including two

perfect fluid energy momentum tensors on both branes, see eqs. (2.2) and (2.3) above.

Then we have to satisfy the junction conditions at the positions r = r+ and r = r− (four

junction conditions). In refs. [12, 13] the junction condition for the corresponding single

brane model has been derived. If we apply it in our case we take:

6
√

h(r±) = ±k2
5ρ±r±, 18h′(r±) = −k4

5(2 + 3ω±)ρ±r± (2.9)

and after some algebra we obtain

µℓ2

3r4
+

=

(

1 +
ω+

36
k4
5ℓ

2ρ2
+

)

=

(

1 +
ω−

36
k4
5ℓ

2ρ2
−

)

ǫ4 (2.10)

Q2ℓ2

2r6
+

=

(

1 +
1 + 3ω+

72
k4
5ℓ

2ρ2
+

)

=

(

1 +
1 + 3ω−

72
k4
5ℓ

2ρ2
−

)

ǫ6 (2.11)
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where k5 = 8πG5, and (ρ+, ρ−) and (p+, p−) are the energy densities and pressures on the

Planck and the TeV brane correspondingly . The equations of state are parameterized as

usual by:

ω+ = p+/ρ+, ω− = p−/ρ− (2.12)

Note that ρ+ > 0 (positive tension brane) and ρ− < 0 (negative tension brane). The

parameter ǫ is defined as:

ǫ =
r−
r+

(2.13)

In order to address the hierarchy problem, in a similar way with that of RS1-model, we

have to choose a very large ratio ǫ = 10−16. Now, if we define the parameters

ρ̄+ =
k2
5ℓ

6
ρ+, ρ̄− =

k2
5ℓ

6
ρ− (2.14)

µ̄ =
µℓ2

3r4
+

ǫ−4, Q̄2 =
Q2ℓ2

2r6
+

ǫ−6 (2.15)

we obtain that

µ̄ = (1 + ω+ρ̄2
+)ǫ−4 = (1 + ω−ρ̄2

−) (2.16)

Q̄2 =

(

1 +
1 + 3ω+

2
ρ̄2
+

)

ǫ−6 =

(

1 +
1 + 3ω−

2
ρ̄2
−

)

(2.17)

In what follows we will consider that 0 < µ̄ ≪ 1 and 0 < Q̄2 ≪ 1, as our purpose is to

construct two brane models that are described by asymmetric metrics which are linearized

perturbations around the RS1 metric. See also eq. (2.27) for the perturbation δh below.

This implies that r+, which is the radius that determines the position of the Planck brane

in the bulk, is (comparatively) a very large quantity 1. In particular, we have to satisfy

both the inequalities r2
+ǫ2 ≫ √

µℓ and r3
+ǫ3 ≫ Qℓ.

By solving eqs. (2.16) and (2.17) (they are four algebraic equations with four unknown

parameters) we find the energy densities:

ρ̄2
+ = 1 − 3µ̄ ǫ4 + 2Q̄2ǫ6 (2.18)

ρ̄2
− = 1 − 3µ̄ + 2Q̄2 (2.19)

and the equation of state parameters

w+ =
−1 + µ̄ ǫ4

1 − 3ǫ4µ̄ + 2Q̄2ǫ6
(2.20)

w− =
−1 + µ̄

1 − 3µ̄ + 2Q̄2
(2.21)

If we considered that 0 < µ̄ ≪ 1 and 0 < Q̄2 ≪ 1 (as our purpose is to construct two

brane models that are described by asymmetric metrics which are linearized perturbations

around the RS1 metric) and expand w+ and w− for small arguments µ̄, Q̄2 ≪ 1 we obtain

w+ = −1 − 2µ̄ ǫ4 + 2Q̄2ǫ6 (2.22)

w− = −1 − 2µ̄ + 2Q̄2 (2.23)

1Also r
−

is a very large quantity because µ̄ = µℓ2

3r4

−

and Q̄2 = Q2ℓ2

2r6

−

are assumed to be very small numbers.
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We see that the energy densities ρ̄+, ρ̄− and the state factor parameters w+, w− depend

only on the constants µ̄ and Q̄2 and the hierarchy parameter ǫ. Note that for ω+ = −1

and ω− = 1 we obtain the first RS-model.

The equation of state parameters should respect the null energy condition ω > −1,

hence if we demand ω+ ≥ −1 and ω− ≥ −1 we obtain the following constraint:

µ̄ ≤ Q̄2ǫ2 (2.24)

This equation means that we can choose the parameters µ̄ (> 0) and Q̄2 (> 0) arbitrarily

insofar as they satisfy the constraint of eq. (2.24). Note that between the two branes there

are no horizons as the parameters µ̄ and Q̄2 are assumed to be very small, and the positions

r+ and r− of the two branes are very large.

Finally, we would like to stress the fact that, although this problem has been considered

previously in the literature, see refs. [12, 13], the results for the energy densities (eqs. (2.20)

and (2.19)) and the state factors (eqs. (2.22) and (2.23)) are presented for the first time in

the present paper.

2.3 5D AdS-Reissner-Nordstrom solution as a linearized perturbation around

the Randall-Sundrum metric

To write the 5D AdS-Reissner-Nordstrom solution as a linearized perturbation around the

RS metric, we perform the following change of variables r → z(r) in eq. (2.6):

r = r+e−k z , for z > 0

r = r+ek z , for z < 0 , (2.25)

If we rescale xµ → r+

ℓ
xµ (µ = 0, . . . , 3), we obtain:

ds2 = −a2(z)h(z)dt2 + a2(z)dx2 + h(z)−1dz2 (2.26)

where a(z) = e−k|z|, and k = ℓ−1 is the inverse AdS5 radius. For the function h(z)

we obtain:

h(z) = 1 − δh(z), δh(z) = 3 µ̄ ǫ4 e4k|z| − 2 Q̄2 ǫ6 e6k|z| (2.27)

The positions of the branes which are located at r+ and r− = r+ǫ in the original coordinate

system, are determined in the new coordinate system by the equations z = 0 and z = zc

correspondingly, where ǫ = e−kzc (rc = zc/π is radius of the compact extra dimension).

Note that the large hierarchy ǫ ∼ 10−16 is achieved if we choose zc ≃ 37. In addition, we

will assume that |δh(z)| ≪ 1 in the interval 0 < z < zc, or equivalently we adopt that

δh(z) is only a small perturbation around the RS-metric. We shall use the term Planck

brane for the positive tension brane at the position z = 0, and the term TeV brane for the

negative tension brane, at zc.

2.4 Bulk photons in asymmetric two brane models

In this section we will study the case of a 5D massless U(1) gauge boson AN in the

background of an asymmetrically warped solution of the form of eq. (2.26). We stress

– 6 –
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that the gauge field AN must not be confused with the gauge field HN , introduced in

the previous section. As we will see later, we will identify the zero mode of AN with the

standard four dimensional photon. On the other hand HN is an additional bulk field which

does not interact with the charged particles on the brane. The equation of motion for

AN reads:
1√
g
∂M

(√
ggMNgRSFNS

)

= 0 , (2.28)

with FNS = ∂NAS − ∂SAN , and N,S = 0, 1, . . . 4. In the background metric of eq. (2.26),

eq. (2.28) gives:

− ∂z(a
2(z)h(z)∂zAj) −∇2Aj +

1

h(z)
∂2

0Aj = 0, j = 1, 2, 3 , (2.29)

where we have assumed the Coulomb gauge condition:

~∇ · ~A = 0, A0 = 0, Az = 0 , (2.30)

which is suitable for the case of a Lorentz violating background. On setting in eq. (2.28):

Aj(x, z) = eip·xχj(z), pµ = (−ω,p) (2.31)

we obtain

− ∂z

{

a2(z)h(z)∂zχ
}

+

{

p2 − ω2

h(z)

}

χ = 0 (2.32)

where for brevity we have dropped the index j from χ. Note that the spectrum of eq. (2.32)

is discrete, due to the orbifold boundary conditions [6], χ′(0) = 0 and χ′(zc) = 0 (where

the prime denotes a z-derivative).

We would like review here briefly the spectrum in the case of RS1-model (δh = 0),

which consist of a zero mode plus an infinite tower of massive KK modes. It suffices to

mention that the nonzero eigenvalues are:

m(0)
n = xn k e−kzc , n = 1, 2, 3, . . . (2.33)

where xn are the roots of the zeroth order Bessel function J0(xn) = 0. On adopting

kzc ∼ 12, which is the standard choice in order to connect electroweak (ew) and Planck

scales (MP = ekzcmew) in a RS framework [6], one obtains that:

m(0)
n ∼ TeV , n = 1, 2, . . . . (2.34)

The corresponding eigenfunctions are:

χ
(0)
0 =

1

N0
, N0 =

√
zc (2.35)

χ(0)
n =

1

Nn
ekzJ1

(

m
(0)
n

k
ekz

)

, Nn =
ekzc

√
2k

J1(xn) (2.36)

where the coefficients N0, Nn are defined by the normalization condition:
∫ zc

0
χ(0)

n (z)χ(0)
m (z)dz = δmn (2.37)

– 7 –
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V
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 =0.01

Figure 1. The phase velocity of the photon Vph as function of ω/k for kzc = 2 and ∆ =

1, 0.5, 0.1, 0.01. We see that as ∆ decreases the perturbative region of Vph spreads towards

larger energies ω/k.

We would like to mention that the above formulas for the wave functions and the eigenvalues

are only approximative, which are valid for kzc ≫ 1. These formulas are good approxima-

tions for the perturbative approach we presented in ref. [2] where we have considered the

real hierarchy kzc = 37. However in section 4.2, in which we perform calculations for the

small hierarchy kzc = 3, eqs. (2.33) and eq. (2.36) above must be replaced with the exact

formulas of ref. [15, 16] (see eqs. (4.2) and (4.4) below).

3 Phase and group velocity of photons: a nonperturbative analysis and

a comparison with perturbation theory

In this section we will examine the case of bulk photons by using a nonperturbative ap-

proach. A similar nonperturbative analysis in the case of gravitons has been presented in

the previous work of ref. [14]. We found useful to keep same of the formalism of this paper.

In addition, we have used the main argument of [14], according to which the qualitative

results for kzc = 2 can be extrapolated for the very large hierarchy kzc = 37. Note, that

in this work we support this argument by performing computations for even larger values

of kzc (kzc = 8 in figure 2 below).

If we introduce the dimensionless variable y = kz in eq. (2.32) we obtain

∂2
yχ +

{

−2 +
h′

h

}

∂yχ − 1

a2h

{

(p

k

)2
− 1

h

(ω

k

)2
}

χ = 0 (3.1)
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1,000008
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1,000016

1,000020

k
k

 

V
ph

 

Figure 2. The phase velocity of the photon Vph as function of ω/k for kzc = 8 and ∆ = 1, 0.001.

We see that even for larger hierarchies kzc (ǫ = e−kzc) the qualitative features of the phase velocity

do not change.

0 1 2 3 4 5 6 7
1,0000

1,0001

1,0002

1,0003

1,0004

1,0005

V
ph

 kz
c
=3.5

 kz
c
=4.

 kz
c
=5.

/k

Figure 3. The phase velocity of the photon Vph as function of ω/k for kzc = 3.5, 4, 5 and ∆ = 0.01.

As kzc increases the perturbative region shrinks in the low energy range ω/k ≪ 1, and as a result

the velocity Vph tends to its limiting value in a much faster way.

where

h(y) = 1 − δ e4y(3 c̃a − 2 e2y), δ = Q̄2ǫ6, c̃a =
µ̄

Q̄2ǫ2
(3.2)
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Figure 4. The phase and the group velocity of the photon (Vph and Vgroup correspondingly) as a

function of ω/k for kzc = 3 and ∆ = 0.01.

and the boundary conditions now read:

χ′(0) = 0, χ′(kzc) = 0 (3.3)

Note that 0 < c̃a ≤ 1 if we demand the null energy condition to be satisfied, see section

2.2 and eq. (2.24) above. We have also checked that the value of c̃a has not a significant

impact for our numerical analysis, hence in what follows we will assume that c̃a = 1, which

is the case where ω+ = −1, see eq. (2.22) above. Now, it is convenient to introduce a

new parameter

∆ = Q̄2 = δ ǫ−6 (3.4)

which can help us to estimate where perturbation theory fails as an approximation for

solving eq. (3.1). In particular, even for ∆ ≪ 1, we can trust perturbation theory only

if the energy of the photon ω is relatively small. For larger energies ω the term 2 ω2δh

(δh = 1− h ≃ ∆ ≪ 1) in eq. (2.32) (or in eq. (3.1)) cannot be assumed small. In this case

perturbation theory breaks down and a nonperturbative approach is necessary.

The nonperturbative analysis of this section is reduced to an eigenvalue problem of

the second order differential equation (3.1) with the boundary conditions (3.3). We will

consider that |p| is fixed and will try to determine the energy ω in order to satisfy the bound-

ary conditions of eq. (3.3). Note that there is an infinite tower of energies ωn (n=0,1,2. . . )

which are solutions of the above mentioned eigenvalue problem for given momentum |p|.
The first eigenvalue ω0 corresponds to the zero mode and the remaining eigenvalues ωn

2We have used that h = 1−δh, hence the term ω2

h
in eq. (2.32) can be written as ω2(1+δh) = ω2+ω2δh.

The term ω2δh in the previous equation reveals the perturbative nature of eq. 2.32 as δh ≈ ∆ ≪ 1. However,

for large energies ω ≈ 1/
√

δh perturbation theory breaks down.

– 10 –
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(n 6= 0) to the massive KK excitations. Thus, we kept |p| fixed and we integrated numer-

ically 3, for a number of values of ω (ω > |p|) separated by a relatively small constant

step δω, eq. (3.1) with the initial condition χ(0) = 1, χ′(0) = 0. We observed that as we

increased ω, with the constant step δω, the derivative χ′(kzc) changed sign for first time

(from positive to negative), in an interval of energies [ωa, ωa + δω]. In this interval the first

eigenvalue ω0 can be determined by bisection method. The infinite tower of energies ωn

(n 6= 0), can be determined in the same way.

The phase velocity

Vph = ω/|p| (3.5)

of the photon (zero mode) as a function of ω (measured in units of k) has been plotted

in figure 1, figure 2 and figure 3, for several values of ∆ and kzc (ǫ = e−kzc). As we see,

the phase velocity is a monotonically decreasing function which tends asymptotically to a

constant value, seemingly equal to one independently from the parameters ∆ and kzc.

In figure 4 we have plotted the group and phase velocity as a function of ω/k

Vgr =
dω

d|p| (3.6)

We can observe that they have a very similar behavior. However, in contrast with the

phase velocity, the group velocity becomes smaller than unity, then it increases and tends

rapidly to unity. Also, as we see in figure 4, the phase and the group velocity are equal

in the low energy limit as it is expected. It is well known that the phase and group

velocity in vacuum should be identical, however for larger energies we observe significant

differences because the vacuum behaves as a medium with a non-trivial refractive index.

The perturbative formulas for the phase and group velocity, of eqs. (1.2) and (1.3), agree

with our numerical analysis in the low energy limit, as they give the same value for the

group and phase velocity for zero energy, decreasing quadratically with energy, while for

larger energies outside the perturbative region they behave differently.

Especially in figure 5, we observe that there is an inflexion point ωf which separates

the perturbative from the nonperturbative sector of the theory. In the perturbative sector

(ω < ωf ) we expect that

Vph(ω) = Vph(0) − CG ω2, (CG > 0) (3.7)

This formula has been derived in ref. [2] by using second order time independent pertur-

bation theory. The parameters Vph(0) and CG are given by the formulas of eqs. (2.30) and

(2.31) in [2], These formulas are suitable for numerical computations, if the parameters ∆

and kzc are known.

We also see, in figure 5, that when ω crosses the inflexion point ωf the rate of decreasing

of the phase velocity gets smaller and the phase velocity possesses an asymptotic value

equal to one. Note also, that the perturbative range of the phase velocity increases (or the

inflexion point ωf is displaced towards the right direction in the figures) for smaller values

of the parameter ∆, as we see in figure 1 and figure 2.

3For the numerical solving of the eigenvalue problem we have used mathematica programming.
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Figure 5. The phase velocity of the photon Vph as function of ω/k for kzc = 3 and ∆ = 0.01. The

discrete points are the nonperturbative results, and the continuous line corresponds to perturbation

theory: Vph(ω) = 1.00055 − 0.00012 (ω/k)2, where the coefficients have been computed by the

formulas of eqs. (2.30) and (2.31) in ref. [2]. We see that the inflexion point ωf ≃ 1.1 k separates

the perturbative from the nonperturbative sector of the theory.

At this point, we would like to stress that our numerical analysis is restricted to an

unrealistic range of the parameter space of ∆ and kzc, which is far beyond the physically

interesting case of kzc ≃ 37. However, it is reasonable that we are not in position to

perform numerical computations in this case, as it demands great accuracy. This is mainly

due to the extremely large values of the exponential e6kz, that appear in eq. (2.27).

Now, if we compare figure 1 for kzc = 2 and figure 2 for kzc = 8, we see that the

qualitative features of the phase velocity as a function of ω are unchanged, although there

is a significant difference between the corresponding hierarchies ǫ1 = e−2 ∼ 10−1 and

ǫ2 = e−8 ∼ 10−4. We have also performed computations for larger kzc = 10 (ǫ3 ∼ 10−5)

and we have confirmed the same behavior for the phase velocity. We also see that this

behavior is independent from the parameter ∆, which determines the perturbative range

of our model. Accordingly, in the conclusions we will consider an extrapolation assuming

that the qualitative behavior of the phase velocity is also valid for ǫ ∼ 10−16 which is the

physically interesting case.

Finally in figure 3 we see that as kzc increases the perturbative range of the phase

velocity shrinks near the origin, where ω/k ≪ 1. This behavior is reasonable as ω in this

figure is measured in units of k (or in units of Planck scale) and, in the case of realistic

values of kzc ≃ 37, the point where we have the breakdown of perturbation theory is

expected to be several orders of magnitude smaller than the Planck scale (we will give an

estimate of this point in conclusions).
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Figure 6. The square of the normalized wave function k−1χ2
norm of the zero mode (4D photon) as

a function of kz for kzc = 3, ∆ = 0.01 and ω = 0.1k, 0.5k, 1.1k, 2k, 3k, 10k. We see that the value

of the wave function on the TeV brane (which is proportional to the coupling of the zero mode with

matter localized on the TeV brane) tends to zero as the energy of the zero mode increases. On the

other hand, on the Planck brane, we observe that the value of the wave function increases with the

energy.
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Figure 7. The square of the normalized wave function k−1χ2
norm of the zero mode (4D photon) as

a function of kz for kzc = 3 and ∆ = 0.01 and ω = 5k, 15k, 25k, 35k. We observe that the value of

the wave function, on the Planck brane, increases with the energy and tends to a constant value.
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4 Wavefunction analysis

4.1 Zero mode

In figure 6 and figure 7 we have plotted the square of the normalized wave function measured

in units of k (k−1χ2
norm) for several values of the energy ω, assuming that the values of

the parameters ∆ and kzc are kept fixed. In particular, in figure 6, we observe that for

small energies within the perturbative region of ω (ω < ωf ) the wavefunction of the photon

is almost constant. This is expected as in the case of RS-model (δh = 0 or ∆ = 0) the

wavefunction can be obtained analytically and it is constant, see eq. (2.35). As the energy of

the photon increases the value of the wave function on the TeV brane (χnorm(zc)) decreases,

see figure 6. For ω = ωf the value of the wave function on the TeV brane is half of its

value at ω ≃ 0, while for larger values of ω (ω > ωf ) it tends rapidly to zero. On the other

hand, we see that the wave function on the Planck brane increases. Especially, in figure 7

we have plotted the wavefunction of the photon for even larger values of ω, deep in the

nonperturbative sector of the theory. It seems that the wavefunction on the Planck brane

tends to take a limiting value, quite larger than that for ω ≃ 0.

If we take into account that the ”effective” coupling constant of the zero mode (4D

photon), with matter localized on the TeV brane, is proportional to χnorm(kzc) (see [15,

16]), we conclude that photons with very high energies ω ≫ ωf tend to decouple from

matter which is localized on the TeV brane. Note, that a similar behavior has been observed

for the massive KK modes of the 5D photon, which happens for even larger energies, as

we see in the next section. On the other hand, in the case of Planck brane the coupling of

the photon with matter increases with the energy, and tends to an asymptotic value.

4.2 First KK excitation

In this section we examine the wave function and the group velocity of the first KK mode.

In particular, in figure 8, we see that the projection of the wave function on the TeV brane

decreases as the energy of of the 1KK mode increases, and for quite large ω the value of

the normalized wave function becomes almost zero on the TeV brane. This means that for

comparatively large energies where Lorentz violation effects become significant the 1KK

mode tends to decouple from matter, which is localized on TeV brane. Note, that a similar

behavior was obtained for the zero mode in the previous section. In the case of higher KK

excitations a similar behavior is expected. On the other hand the projection of the wave

function on the Planck brane is almost constant independently from the energy ω.

The 1KK mode is a massive particle, as for zero momentum p the energy ω takes a

nonnegative value ω = m1KK (6= 0). In figure 9, for ∆ = 0.01 and kzc = 3, we see that

m1KK = 0.153k, as it is the lower energy which is obtained for p = 0 which corresponds

to the inertial mass of the particle.

Note that in the case of ∆ = 0, where we can use the approximative formula for kzc ≫ 1

m(0)
n = xn k e−kzc , n = 1, 2, 3, . . . (4.1)

that gives the masses of the KK excitations, where xn are the roots of the zeroth order

Bessel function J0(xn) = 0. For n = 1 we obtain that m1KK = 0.120k. However, this value
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Figure 8. The square of the normalized wave function k−1χ2
norm of the 1KK mode as a function of

kz for kzc = 3 and ∆ = 0.01 and ω = 0.5k, 1k, 2k, 3k, 5k, 10k. We see that the value of the wave

function on the TeV brane tends to zero as the energy of the 1KK-mode increases. On the other

hand, on the Planck brane, we observe that the value of the wave function is almost constant.
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Figure 9. The group velocity Vgr(ω) as a function of energy in the case of the first KK mode,

for kzc = 3 and ∆ = 0.001. Note that the group velocity approaches the unity remaining always

smaller than the group velocity of the zero mode. We also see in this figure that the energy range

has a lower bound which is identified to the mass of the 1KK mode.
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has a significant deviation from the numerical result m1KK = 0.153k. We will see that we

can improve this difference by considering the exact formula which is given in Ref [15, 16],

according to which m
(0)
n are the solutions of the equation

b1(m
(0)
n ) = b1(m

(0)
n ekzc) (4.2)

where the function b1(m
(0)
n ) is defined as

b1(m
(0)
n ) = −J0(m

(0)
n /k)

Y0(m
(0)
n /k)

(4.3)

If we solve the above equation numerically, for kzc = 3 we obtain m1KK = 0.1525k. This

value is closely to 0.1530k, which was obtained by solving numerically the differential

equation (3.1), and it incorporates the Lorentz symmetry violation effects that are due to

the asymmetric brane background.

However, we can use first order perturbation theory in order to correct the value

0.1525k which was obtained from formula (4.2). For details of the method the reader may

consult ref. [2]). Now we obtain the corrected value m1KK = 0.1585k, which incorporates

the Lorentz symmetry violation effects to first order of perturbation theory. Note that

this value is in a very good agreement with the value m1KK = 0.1530k that was obtained

nonperturbatively.

For the above mentioned computation we have used the exact formula for the

wave function:

χ(0)
n =

1

Nn

ekz

(

J1

(

m
(0)
n

k
ekz

)

+ b1(m
(0)
n )Y1

(

m
(0)
n

k
ekz

))

(4.4)

where the coefficients Nn are defined by the normalization condition:

∫ zc

0
χ(0)

n (z)χ(0)
m (z)dz = δmn (4.5)

Note that these coefficients were computed numerically.

It is worth noting that in the realistic case kzc = 37 and ∆ ∼ 10−8 ≪ 1 these differences

are expected to be more suppressed (we have checked it with first order perturbation theory)

and obviously are not detectable in the current high energy experiments, for example

in LHC.

As the 1KK mode is a massive particle the phase velocity is not suitable to describe

its motion. For this reason in Fig, 9 we have plotted the group velocity of the particle

as a function of ω/k. We see that the energy has a lower bound which characterize the

inertial mass of the particle as we have also explained in the previous paragraph. We also

see that the group velocity is always smaller than unity, which is the standard velocity of

light in the tree level of our model, and tends rapidly to this value Vgr = 1 as the energy ω

increases. Finally, we would like to note that in our model the group velocity of the zero

mode, even if it becomes smaller than unity as we see in figure 4, is always larger than the

group velocity of the first KK mode.
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Note, that the group velocity of the first KK excitation can not be distinguished

experimentally from the velocity of a normal Lorentz invariant massive particle. The

reason is that, even if KK excitations were derived in astrophysical sources they will decay

(because they have masses of the order of TeV) before they reach the detectors in the

surface of earth. A further discussion, which must include a perturbative analysis, and a

straightforward comparison with the velocity of a normal Lorentz invariant massive particle

is beyond the scope of this paper.

5 Discussion

We examined a two brane model where the 5D Lorentz invariance is spontaneously broken

due to the nonstandard vacuum of a five-dimensional charged black hole. In this framework

we found a mechanism which produces an energy dependent vacuum refractive index,

assuming that photons can freely move in the bulk, in contrast to the conventional brane

world hypothesis. As perturbation theory was examined extensively in a previous work, in

this paper we focused to the nonperturbative case by solving numerically the eigenvalue

problem.

We have mainly studied the phase (and the group) velocity of the zero mode, 4D

photon, and we found that it is in general a monotonically decreasing function which for

very large energies tends to unity, that is the standard velocity of light at tree level of our

model. Note that a very similar behavior was obtained for the group velocity of photon,

as we can see in figure 4 above. On the other hand, in the case of the first KK mode which

is a massive particle, we found that the group velocity is always smaller than unity, and it

cannot exceed the group velocity of the zero mode in the high energy limit.

By comparing with perturbation theory we found that there is an energy ωf after

which perturbation theory breaks down. Specifically ωf is the inflexion point (see figure 5)

where the quadratic dependence on energy terminates and the velocity tends to a limiting

value. One could give an estimate of this point by comparing with the recent data of the

current experiments of MAGIC [17, 18], H.E.S.S [19] and FERMI [20] telescopes. In the

case of our model, which predicts a quadratic dependence on the energy for the velocity

(see eq. (1.2)), the stringent bound is set by the MAGIC experiment:

V = 1 −
(

ω

M2

)2

, M2 ≥ 2.6 × 1010GeV (5.1)

The above restriction was obtained in ref. [18] by fitting the recent experimental data

of MAGIC [17] assuming a quadratic energy dependence for the photon refractive index.

Hence, if we take the lowest bound for M2 (M2 = 2.6 × 1010GeV ) we conclude that

the energy ωf , after which perturbation theory breaks down, should be quite smaller than

2.6×1010GeV . Note that the above upper limit, for the inflexion point ωf , if it is expressed

in eV , gives a value equal to 2.6× 1019eV which is close (but smaller) to the energy range

of the ultra high energy cosmic rays (particles with astrophysical origin and energies larger

than the GZK limit 7×1019eV ). Accordingly the quadratic dependence of velocity of light

from the energy ω, in the ultra high energy cosmic rays energy region, is not valid any
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more. Our analysis, in this region of energies, shows that the velocity of light is almost

independent from the energy and it has taken a limiting value, which is the velocity of light

at tree level of our model.

In ref. [21] the authors found the following severe constraint for quadratic

dispersion relations:

V = 1 − 1

2
ξ2

(

ω

MPL

)2

, MPL = 1019GeV, ξ2 < 2.4 × 10−7, (5.2)

which is due to the lack of observations of photons above the GZK limit, and appears to

be several orders of magnitude stronger than the bounds of MAGIC observations (compare

with eq. (5.1)). However, this constraint presupposes that the quadratic energy dependence

of the velocity of light is valid in the ultra high energy cosmic ray energies, something

which does not happen in our model as we have mentioned previously. We conclude that

the constraints from the MAGIC observations are the most stringent ones which can be

applied to our model.

Finally, we think that the main goal of this work is a model with a photon dispersion

relation which exhibits a quadratic behavior in the range of energies of few TeV (Magic)

but a completely different behavior for larger energies 1020eV , as it is required in order

this model to pass the strict constraints from ultra high energy cosmic rays.
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